Databases & Information Retrieval

2.610,00 €

Teilnahme Erläuterung der Teilnahmemöglichkeiten
Veranstaltungszeitraum
Zertifikatsstudium

Im Zertifikatsstudium belegen Sie Module im Umfang von mindestens 15 Credit Points, Sie sind an der Leuphana Universität Lüneburg als Student*in eingeschrieben, können auf sämtliche Ressourcen der Hochschule zurückgreifen, legen Prüfungen ab und Sie erhalten als Abschluss das Hochschulzertifikat "PS Individuale".

Weitere Informationen zum Zertifikatsstudium

Modulstudium

Das Modulstudium schließen Sie mit einer Prüfung ab und erhalten die angegeben Credit Points. Diese können Sie sich auf ein Bachelor- oder Masterstudium anrechnen lassen. Das Modulstudium ist interessant für Sie, wenn Sie nur ein einzelnes Modul buchen möchten. Zum Abschluss erhalten Sie eine Bescheinigung mit einer ausführlichen Aufstellung Ihrer erbrachten Leistungen.

Weitere Informationen zum Modulstudium

Modulteilnahme

Die Modulteilnahme erfolgt OHNE Prüfung. Sie erhalten keine Credit Points. Credit Points sind dann wichtig, wenn Sie diese für ein Bachelor- oder Masterstudium anrechnen lassen wollen. Sie erhalten zum Abschluss des Moduls eine Teilnahmebescheinigung.

Weitere Informationen zur Modulteilnahme

Aktuell 10 Plätze verfügbar
Lehrveranstaltungen dieses Moduls
F5 Databases & Information Retrieval
Modulinformationen "Databases & Information Retrieval"
This module consists of two parts: In the first part, databases are discussed with a focus on unstructured and big data (e.g., NoSQL databases, horizontal and vertical scaling, ACID, CAP theorem and MapReduce). In the second part, information retrieval topics are covered (e.g., search engines, Approximate Search (k-Nearest Neighbor, Min-Hashing, Locality-Sensitive Hashing), and Recommender Systems)


Ist zugangsbeschränkt: Ja
Voraussetzung - Hochschulzugangsberechtigung: Nicht erforderlich
Voraussetzung einjährige Berufserfahrung: Nicht erforderlich
Voraussetzungen - Sprache: keine
Voraussetzungen - Fachkenntnisse: keine
Weitere Voraussetzungen

  • Participation in the modules "DS-F1 Mathematics & Statistics" as well as "DS-F2 Fundamentals of Machine Learning" or proof of corresponding knowledge
  • Mastery of a programming language (e.g. Python)

Themenfeld: IT & Digitalisierung
Veranstaltungsformat: Blended Learning
Niveau: Master
Lehrsprache: englisch
Studiengang: Data Science
Anzahl der CP / ECTS: 5
Workload - Kontaktzeit (in Stunden): 40
Workload - Selbstlernzeit (in Stunden): 85
Prüfung: kursübergreifende Prüfung (Modulprüfung)
Prüfungsformat: Klausur
weiteres Prüfungsformat: keine weitere Prüfung
Qualifikationsziele

  • Acquire theoretical knowledge about the storage and processing possibilities of big data
  • Compare different architectures with regard to their advantages and disadvantages in different application scenarios
  • Gain knowledge of concurrent processing of large data sets and apply it to selected examples

27 = Termine dieses Moduls
27 = Termine mit Überschneidungen
27 = Bereits ausgewählte Module
Hinweis: Termine unter Vorbehalt